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On estimating the Weibull modulus for 
a brittle material 
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Common methods of estimating the Weibull modulus are surveyed. Computer simulation 
is used to obtain the statistical properties of different estimators. Most estimators are 
shown to be biased and their respective adjustment factors, for a range of experimentally 
feasible sample sizes, are given. 

1. Introduction 
The tensile strength of a brittle material under 
uniform loading is found both theoretically and 
practically to follow the Weibull distribution, with 
probability o f  failure at stress a given by 

- -  Ou 
= - v  , (1 )  P, 1-exp i-Z--o] ) 

where m is a parameter known as the Weibull 
modulus, V is the volume of  the material, Oo is a 
normalizing factor and Ou is the stress below 
which there is zero probability of failure. The 
Weibull modulus, which was previously considered 
to be an empirical constant, is given a physical 
meaning by Jayatilaka and Trustrum [1].  It is 
shown to be related to the flaw size distribution of 
a brittle material. Thus m is an important material 
parameter which characterizes the "brittleness" of  
a material. 
The mean of  the Distribution 1 is 

OoP[1 + (1/m)l 
= Ou + V 1/m , (2) 

where P is the gamma function, so Equation 1 can 
be written in the form 

(I i P, = 1 - - e x p  -- P | .  (3) 

It follows from Equation 2 that the mean 
failure stresses, 51 and 52, of  two specimens of  the 
same material with respective volumes V1 and 112 

are related by the formula 

~ l - - O u  _(V2t '/m 
:~ - e .  \ v i i  

(4) 

This is a useful result as the mean failure stress for 
a large volume V2 can be estimated from the 
observed mean failure stress of  a sample of speci- 
mens of  smaller volume V1, provided that m and 
o u are known for the material. So one problem is 
how to estimate m and ou for a material, given a 
set of failure stresses 01,02 . . . .  , an for nominally 
identical specimens, and a related problem is how 
to choose the sample size n. 

It must be mentioned that many workers have 
estimated the parameters in the Weibull distri- 
bution, but usually they appear to have over- 
looked the possible inaccuracies which can arise as 
a result of  the sample size or the method of esti- 
mation chosen. In this paper some common 
methods of  estimation are analysed. 

2. Estimation of m and r 
The method of maximflm likelihood was used to 
estimate m and Ou for a set of 32 experimentally 
observed flexural strengths of reaction-sintered 
silicon nitride specimens, tested in three-point 
bending; the observed values varied between 
137.5 and 192.0MNm -2. Maximum likelihood 
estimators are approximately normally distributed 
for large samples and are asymptotically unbiased 
and minimum variance estimators. 
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The likelihood function for the observed failure 

stresses a l ,  02, � 9  , 0 3 2  i s  

L ----- f ( o 1 ) f ( 0 " 2 ) . . . f ( 0 3 2 ) ,  (5) 

where f ( a ) =  &f/do  is the probability density 

function, and the maximum likelihood estimates 

of m, ou and 8 are the values of m ,  au and 8 which 

maximize L. These values can be found by search 

methods or by the Newton-Raphson  method. 

Table I gives the maximum likelihood estimates, 

m L  and OL, for selected values of ou. Allowing au 
to vary as well, the maximum of L occurred at 

m = 4 . 0 4 ,  au = 118.5 and K =  167.16, which is 
also included in Table I. 

The relationship between o u and m L is observed 
to be closely linear and this follows from the result 

that maximum likelihood estimators are asymp- 

totically multivariate normal, so that the expected 

value of m L is a linear function of au and OL, and 

KL is almost constant, as would be expected. 

Also shown in Table I are the safety factors, 

-6L/a , where a is calculated from Equation 3 for a 

TABLE I Maximum likelihood estimates, m L and 8L, 
for given au, and safety factors, 5L/O, for Pf = 10 -2 , 10 -~ , 
10 -6 ' 

a u m L 8L aL/a 

e l =  h =  Pf= 
1 0  -2 1 0 - 4  1 0 - 6  

0 13.86 166.98 1.34 1.87 2.61 
20 12.22 167.00 1.33 1.81 2.40 
40 10.56 167.00 1.32 1.75 2.20 
60 8.96 167.07 1.31 1.66 1.99 
80 7.30 167.11 1.29 1.57 1.78 

100 5,63 167.16 1.27 1.46 1.57 
118.5 4.04 167.16 1.23 1.35 1.39 
130 2.99 167.08 1.20 1.27 1.28 

given value of Pf. The safety factors can be seen to 
decrease as Ou increases. 

In Fig. 1, the Weibull Distribution 3 is plotted 

for the cases % = 0, m = 13.86, ~ =  166.98 and 

at, = 118.5, rn = 4 . 0 4 ,  ~ =  167.16 ( t h e  overall 
maximum likelihood estimates). Also shown for 

comparison is the empirical distribution function, 

S ( a ) ,  which is the proportion of the observed a t ,  

02 . . . . .  032 which are less than or equal to or. A 
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Figure 1 The graphs of Pf(a) given by Equation 3 and the empirical distribution function, S(a). 
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statistic which tests the goodness of  fit of  a dis- 
tribution to the observations is the K o l m o g o r o v -  
Smirnov statistic, 

D = maximum IP,(o) -- S(a)[ .  (6) 
17 

For the Weibull distribution with o u = 0, D = 
0.075 and for au = 118.5, D = 0.089, so using this 
criterion, the Weibull distribution with ou = 0 
gives the closer fit. Whatever criterion is used there 
is clearly not much to choose between the two dis- 
tributions as regards their goodness of fit to the 
data. Also the safety factors for ou = 0 are higher 
than those for other values of  Ou, and a,,, for a 
material could depend on the volume V. Thus we 
recommend that  for brittle materials ou = 0, both 
in the interest of  safety and for consistency in the 
definition of the Weibull modulus. 

3. Methods of estimating m 
In this and the following sections % is assumed to 
be zero. Several different methods of estimating m 
have been proposed and some of  these methods 
are discussed. 

Putting a u = 0, Equation 1 can be put into the 
form 

Y In In ( 1 - ~  ~ l n f f m +  . . . .  m in a, (7) 

so that  the graph of y against In o is a straight line 
with slope m. Suppose we have a random sample 
of  the observed failure stresses of n nominally 
identical specimens subjected to uniaxial tension 
and that the stresses are ordered so that  

Then it can be shown that  the expected value of 
P~(ai) is i / (n + 1), so one method of estimating m 
is to use the method of least squares on the linear 
model 

y~ = In in - -  [i/(n + 1)] 

V 
= In 5"o --~ + rn in oi + % 

(8) 

where ei is the error arising from the difference 
between the observed value of  P,(oi)  and its 
expected value. The least squares estimate of m is 

E y i In o i -- ( I /n )  E y i  E in oi 
i " (9) 

ms /E (In oi) 2 - - ( 1 / n ) ( ~  in oi) 2 
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The properties of the estimator m s are difficult to 
obtain analytically as the ei do not satisfy the 
usual assumptions of the linear model,  which are 
that the errors are uncorrelated with zero mean 
and constant variance. Under these assumptions 
the least squares estimator is the minimum vari- 
ance, linear, unbiased estimator. 

Another plotting position for P~(oi) is (i - - �89  

which is the average value of the empirical density 
function, S(o), before and after the jump at oi. 

A second estimate of  m from the Linear Model 
8 is 

n / 3  

tea Y i - -  ~ Yi  
"= i = 2 n 1 3  

m B =  n/a (10) 
- iE  In ai in o i 

= i = 2 n / 3  

which is obtained by dividing the observations 
(ln oi ,Y i )  into three equal groups according to the 
size of o i and then m B is given by the slope of the 
line joining the centroids of  the two extreme 
groups. This estimate is easily calculated and is 
recommended for use when the usual assumptions 
of  the linear model are not satisfied [2]. 

The method of maximum likelihood can also be 
used to estimate m and although this estimate has 
optimal properties, a computer is recommended 
for its calculation. To obtain the equation for the 
maximum likelihood estimate, m L ,  we write, 

Pf = 1 - - e x p ( - - b o m ) ,  (11) 

where b = {F[1 + (1/m)]/~}m. The probability 
density function 

d& 
f ( a )  -- -- brae m-1  e x p ( - - b a m ) ,  (12) 

do 

and it follows from Equation 5 that 

l n L  = n l n m + n l n b  

+ ( m - - 1 )  2 1 n a i - - b ~ o i  m. (13) 
i i 

Differentiating In L with respect to m and b and 
equating the partial derivatives to zero gives the 
maximum likelihood estimates, rn L and bg ,  which 
satisfy 

n + ~  lnoi - -bL ~ a ? L l n o i  = O, (14) 
m L i i 

n _ E o ? L  = O. (15)  
bL i 



Eliminating bL between Equations 14 and 15 
gives the following equation for mL, which can be 
solved by the Newton-Raphson  method: 

n + ~  ln a i = O. (16) 
m L ~i a m L  

Another method of  estimating m is the method 
of  moments,  which is a plausible method, but 
the estimates obtained do not, in general have 
many optimal statistical properties. This method 
equates the sample moments with the distribution 
moments,  so for the Weibull Distribution 11, the 
method of  moments estimates, mM and bM, are 
given by solving 

~ = b-*/rnP(l+-r~ ) ,  (17) 

s 2  _ ~(oi-~)2 
n - - 1  

= b -2/rn I" 1 + _2 - -P  2 1 + 
m 

where s 2 is the sample variance. Eliminating b 
gives the following equation for raM, 

{r[1 + (2/m)] --F211 +(1~re)l} 1/2 s 
= --_, (19 )  

p[1 + (l/m)] 

where s/~ is known as the coefficient of  variation. 
The solutions for m M can be obtained graphically 
or by curve fitting, and it can be shown that 

ImM -- 1.267 -- + 0.526 I < 0.02 
S 

for (20) 
4 ~< m M K 14. 

A variety of other methods of estimating m 
have been proposed, many of  them based on order 
statistics, however, most of  them are more compli- 
cated and none of  the estimators appear to have 

smaller variance than the maximum likelihood 
estimator for n > 30. 

4. Properties of estimators 
The statistical properties of the estimators described 
in Section 3 are difficult to obtain analytically, so 
simulation was used. Equation 3 can be expressed 
in the form 

o = In F + (21) 

on putting au = 0 and 8 = 1. Random samples, 
or ,  crz . . . . .  o,~, were then generated by substi- 
tuting random numbers in the range 0 to 1 for 
1 - Pf. Care needs to be taken in the choice of 
method used to generate random numbers, as 
some of  the computer programs for generating 
random numbers are not satisfactory. 

Fortunately, apart from the method of  moments 
estimator, Bain and Antle [3] and Thoman et al. 
[4] have shown that only one value of  m needs t o  

be considered for each estimator to obtain its bias 
and standard error for all values of m. If  we put 
x = bo rn into Equation 11, then x is an expo- 
nential random variable with distribution function 
1 - - e  -x. Also substituting x = ba rn into Equations 
9, 10 and 16 gives 

~. y~lnx i - - (1 /n)  ~i y iN i lnxi  
m s =  z 
m ~ ( lnxi)  2 --(l/n)(13 ln xi) 2 ' (22) 

n/3 n 

rrl B i F l Y i - - i = ~ 2 n l 3  y i  
= n/3 n , (23) 

m I3 l n x i - -  Y, lnx i  
i = 1 ~.i = 2n/3 

and 
~. x mL/m In xi 

n 
- - - - n  + ~ l n x i  = 0 ,  ( 2 4 )  
ms/m ~i xpL/m ' 

respectively, so that the distributions of  the esti- 
mators ms~m, mB/m and mL/m only depend on 
the distribution o f x  and hence are independent of 
m and b. This property does not hold for mM/m. 

Random samples of sizes n = 10, 20, 30, 40 
and 50 were simulated from the Weibull Distri- 
bution 3 with the parameters m = 5, Ou = 0, and 

= 1, and for each n, 2600 samples were simu- 
lated. The estimates ms, ms ,  mL and mM were 
calculated for each sample using the Equations 9, 
10, 16 and 20, and in the case of  ms and mB the 
plotting positions i/(n + 1) and (i --~)ln for/~ 
were both used. Table II shows the mean values of  
ms/m,mB/m,  mL/m and mM/m calculated from 
2600 estimates. For an unbiased estimator the 
mean value should be close to 1. The estimated 
standard errors of  the distributions of  ms/m, 
mB/m, mL/m and mM/m are shown in brackets. 

The Cramer-Rao lower bound for the variance 
of  unbiased estimators of  m based on random 
samples of  size n is 0.603m2/n [4] ,  and in the last 
column of  Table II the values of  ~/(0.608/n) are 
given for comparison with the other standard 
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TABLE II The estimated means and standard errors of the distributions of the estimators of m for sample sizes n = 
10, 20, 30, 40 and 50, obtained from Equations 9, 10, 16 and 20 

n ms/m mB/m mL/m rnM/m x/(O.608/n) 

i i S i i - - ~  
4 -  ~ = - -  4 -  4 = _  

n + l  n n + l  n 

10 0.867 1.055 0.944 1.129 1.165 1.102 
(0.28) (0.34) (0.30) (0.36) (0.34) (0.35) (0.25) 

20 0.894 1.109 0.952 1.063 1.078 1.049 
(0.20) (0.23) (0.20) (0.23) (0.20) (0.21) (0.17) 

30 0.910 1.008 0.961 1.039 1.048 1.031 
(0.17) (0.19) (0.16) (0.t7) (0.16) (0.17) (0.14) 

40 0.920 1.002 0.964 1.028 1.035 1.021 
(0.15) (0.16) (0.14) (0.15) (0.13) (0.14) (0.12) 

50 0.924 0.996 0.966 1.020 1.025 !.014 
(0.14) (0.14) (0.12) (0.13) (0.12) (0.12) (0.11) 

errors. The results for m s / m  (n = 10, 20 and 30) 

agree closely with those reported by  Bain and 
Antle [3] and those for m L / m  (n = 10, 20, 30, 40 

and 50) are close to those given by Thoman et  al. 

[41. 

5. Discussion of results 
In designing an experiment  to find the Weibull 
modulus,  m, of  a brit t le material,  the experimenter  
has to decide on how many specimens to use, 
which involves time and expense, and having 
observed a sample of faiiure stresses, he has to 
choose a method  to estimate m. The lower bound 

of  the standard error of  the estimate is inversely 
proport ional  to the square root  of  sample size, n, 

so n has to be increased by a factor of  4 to halve 
the standard error. Also the standard error is not  
negligible, for example when m = 10 and n = 50 
the standard error of any unbiased estimate is at 
least 1.1, which should be taken into account 
when computing safety factors. As can be seen 
from Table II ,  most  of the estimators are biased, 
though the bias is on the whole much smaller than 
the standard error. 

Taking into consideration the ease of  calculation 
of  the esimate as well as its bias and standard error, 
we would recommend the use of the least squares 
est imate,  ms ,  with a sample size of  about  40 and 
the plott ing posit ion ,P~ = (i - -  �89 However for 
sample sizes over 20, the estimate with the smallest 
s tandard error is the maximum likelihood estimate. 

Table II can be used to adjust an estimate for 
its bias, for example if m L  = 11.5 and n = 40, 
then m should be estimated by  11.5/1.035 = 11.1 

with standard error 11.1 x 0.13 = 1.4. Another  
example is provided by  the data described in 
Section 2 for which n = 32, m z  = 13.86 and 
m s = 13.16 [plotting posit ion Pf = i /(n + 1)]. So 
using linear interpolat ion to estimate the bias, the 
adjusted estimates and their standard errors, 
shown in brackets,  are 13.86/1.029 = 13.5 (2.0) 
and 13.16/0.912 = 14.4 (2.4), respectively, which 
shows how large the errors can be. 

For  the least squares estimator,  ms ,  the plotting 
posit ion Pf = (i - - �89  is preferable, as it  is the less 
biased and the coefficients of  variation for the two 
plott ing positions are almost equal. There is little 
to choose between the two plott ing positions for 

the estimator,  roB, and in general mB is preferable 
to m s  in that  it has a smaller standard error and is 
less biased. Although the method of  moments  

estimator,  raM, is easy to compute,  using graphical 
or curve fitting methods,  and has relatively small 
bias and standard error, it suffers from the disad- 
vantage that the values given in Table II  only hold 
f o r m  = 5. 
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